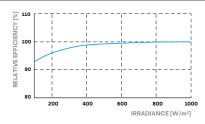

THE IDEAL SOLUTION FOR:

Rooftop arrays on residential buildings

ELECTRICAL CHARACTERISTICS

PO	VER CLASS			320	325	330	335
MIN	IIMUM PERFORMANCE AT STANDAF	D TEST CONDITIO	NS, STC¹ (PC	OWER TOLERANCE +5 W /	-0 W)		
	Power at MPP¹	P _{MPP}	[W]	320	325	330	335
Minimum	Short Circuit Current ¹	I _{sc}	[A]	10.04	10.10	10.15	10.21
	Open Circuit Voltage ¹	Voc	[V]	40.10	40.36	40.62	40.89
	Current at MPP	I _{MPP}	[A]	9.56	9.61	9.67	9.72
	Voltage at MPP	V_{MPP}	[V]	33.47	33.81	34.14	34.47
	Efficiency ¹	η	[%]	≥19.0	≥19.3	≥19.6	≥19.9
MIN	IIMUM PERFORMANCE AT NORMAL	OPERATING CONE	DITIONS, NM	OT ²			
	Power at MPP	P _{MPP}	[W]	239.2	242.9	246.6	250.4
Ш	Short Circuit Current	I _{sc}	[A]	8.09	8.14	8.18	8.22
Minim	Open Circuit Voltage	V _{oc}	[V]	37.81	38.06	38.31	38.55
	Current at MPP	I _{MPP}	[A]	7.52	7.57	7.61	7.65
	Voltage at MPP	V _{MPP}	[V]	31.79	32.11	32.42	32.73

 $^1\text{Measurement tolerances P}_{\text{MPP}}\pm3\%; I_{\text{SC}}; V_{\text{OC}}\pm5\% \text{ at STC}: 1000 \text{W/m}^2, 25\pm2^{\circ}\text{C}, \text{AM 1.5 according to IEC } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according to IEC } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according to IEC } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according to IEC } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{NMOT}, \text{spectrum AM 1.5 according } 60904-3 \cdot ^2800 \text{W/m}^2, \text{spectrum AM 1.5 according } 60904-3 \cdot ^$


Q CELLS PERFORMANCE WARRANTY

ARED

At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²).

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of V _{oc}	β	[%/K]	-0.27
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.36	Normal Module Operating Temperature	NMOT	[°C]	43±3

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	V_{SYS}	[V]	1000 (IEC)/1000 (UL)	Safety Class	II
Maximum Reverse Current	I_R	[A]	20	Fire Rating based on ANSI/UL 1703	C/TYPE 2
Max. Design Load, Push / Pull		[Pa]	3600/2667	Permitted Module Temperature	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/4000	on Continuous Duty	

QUALIFICATIONS AND CERTIFICATES

CE

PACKAGING INFORMATION

VDE Quality Tested, IEC 61215:2016; IEC 61730:2016, Application Class II, Certification holder: Hanwha Q CELLS GmbH; This data sheet complies with

Number of Modules per Pallet	32
Number of Pallets per Trailer (24t)	30
Number of Pallets per 40' HC-Container (26t)	26
Pallet Dimensions (L × W × H)	1745 × 1130 × 1170 mm
Pallet Weight	639 kg

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Made in China

Hanwha Q CELLS Australia Pty Ltd

Suite 1, Level 1, 15 Blue Street, North Sydney, NSW 2060, Australia | TEL +61 (0)2 9016 3033 | FAX +61 (0)2 9016 3032 | EMAIL q-cells-australia@q-cells.com | WEB www.q-cells.com/au

32